Author: Arvind Narayanan
-
When the business model *is* the privacy violation
Sometimes, when we worry about data privacy, we’re worried that data might fall into the wrong hands or be misused for unintended purposes. If I’m considering participating in a medical study, I’d want to know if insurance companies will obtain the data and use it against me. In these scenarios, we should look for ways…
-
What’s new with BlockSci, Princeton’s blockchain analysis tool
Six months ago we released the initial version of BlockSci, a fast and expressive tool to analyze public blockchains. In the accompanying paper we explained how we used it to answer scientific questions about security, privacy, miner behavior, and economics using blockchain data. BlockSci has a number of other applications including forensics and as an…
-
Website operators are in the dark about privacy violations by third-party scripts
by Steven Englehardt, Gunes Acar, and Arvind Narayanan. Recently we revealed that “session replay” scripts on websites record everything you do, like someone looking over your shoulder, and send it to third-party servers. This en-masse data exfiltration inevitably scoops up sensitive, personal information — in real time, as you type it. We released the data…
-
Web Census Notebook: A new tool for studying web privacy
As part of the Web Transparency and Accountability Project, we’ve been visiting the web’s top 1 million sites every month using our open-source privacy measurement tool OpenWPM. This has led to numerous worrying findings such as the systematic abuse of newly introduced web features for fingerprinting, leading to better privacy tools and occasionally strong responses…
-
The future of ad blocking
There’s an ongoing arms race between ad blockers and websites — more and more sites either try to sneak their ads through or force users to disable ad blockers. Most previous discussions have assumed that this is a cat-and-mouse game that will escalate indefinitely. But in a new paper, accompanied by proof-of-concept code, we challenge…
-
Sign up now for the first workshop on Data and Algorithmic Transparency
I’m excited to announce that registration for the first workshop on Data and Algorithmic Transparency is now open. The workshop will take place at NYU on Nov 19. It convenes an emerging interdisciplinary community that seeks transparency and oversight of data-driven algorithmic systems through empirical research. Despite the short notice of the workshop’s announcement (about…
-
Bitcoin is unstable without the block reward
With Miles Carlsten, Harry Kalodner, and Matt Weinberg, I have a new paper titled On the instability of Bitcoin without the block reward, which Harry will present at ACM CCS next week. The paper predicts that miner incentives will start to go haywire as Bitcoin rewards shift from block rewards to transaction fees, based on…
-
Language necessarily contains human biases, and so will machines trained on language corpora
I have a new draft paper with Aylin Caliskan-Islam and Joanna Bryson titled Semantics derived automatically from language corpora necessarily contain human biases. We show empirically that natural language necessarily contains human biases, and the paradigm of training machine learning on language corpora means that AI will inevitably imbibe these biases as well. Specifically, we look at…
-
The workshop on Data and Algorithmic Transparency
From online advertising to Uber to predictive policing, algorithmic systems powered by personal data affect more and more of our lives. As our society begins to grapple with the consequences of this shift, empirical investigation of these systems has proved vital to understand the potential for discrimination, privacy breaches, and vulnerability to manipulation. This emerging…